
Apache Spark MLlib
Machine Learning Library for a parallel computing framework

Review by Renat Bekbolatov (June 4, 2015)

Spark MLlib is an open-source machine learning li-
brary that works on top of Spark. It is included in
the standard Spark distribution and provides data
structures and distributed implementations of many
machine learning algorithms. This project is in active
development, has a growing number of contributors
and many adopters in the industry.

This review will attempt to look at Spark MLlib from
the perspective of parallelization and scalability. In
preparation of this report, MLlib public documenta-
tion, library guide and codebase (development snap-
shot version of 1.4) was referenced[1]. While MLlib
also offers Python and Java API, we will focus only
on Scala API.

There will be some technical terms that are outside
the scope of this report, and we will not look at them
in details. Instead we will explain just enough to
show how a specific MLlib component is implemented
and, wherever possible, provide references for further
independent study if needed.

1 Execution Model

Iterations

Iterative methods are at the core of Spark MLlib.
Given a problem, we guess an answer, then itera-
tively improve the guess until some condition is met
(e.g. Krylov subspace methods). Improving an an-
swer typically involves passing through all of the dis-
tributed data and aggregating some partial result on
the driver node. This partial result is some model,
for instance, an array of numbers. Condition can be
some sort of convergence of the sequence of guesses or
reaching the maximum number of allowed iterations.
This common pattern is shown in Fig 1.

In a distributed environment, we have one node that
runs the driver program with sequential flow and
worker nodes that run tasks in parallel. Our compu-
tation begins at the driver node. We pick an initial
guess for the answer. The answer is some number, an
array of numbers, possibly a matrix. More abstractly,
it is a data structure for some model. This is what
will be broadcast to all the worker nodes for process-

ing, so any data structure used here is serializable.

In each iteration, a new job is created and
worker nodes receive a copy of the most re-
cent model and the function (closure) that
needs to be executed on the data partition.

init

broadcast

p1 p2 p3

aggregate

cond

finalize

Figure 1: Iterations

Computation of model partials
is performed in parallel on
the workers and when all of
the partial results are ready
they are combined and a sin-
gle aggregated model is avail-
able on the driver. This ex-
ecution flow is very similar to
BSP[13]: distribute tasks, syn-
chronize on task completions,
transfer data, repeat.

Whenever possible, worker
nodes cache input data by
keeping it in memory, possibly
in serialized form to save
space, between iterations1.
This helps with performance,
because we avoid going to
disk for each iteration. Even
serialization/deserialization is
typically cheaper than writing
to or reading from disk.

When considering model partials, it is important to
keep the size of the transferred data in mind. This
will be serialized and broadcast in each iteration. If
we want our algorithm implementation to be scal-
able, we must make sure that the amount of data
sent doesn’t grow too fast with the problem size or
dimensions.

Each iteration can be viewed as single program, mul-
tiple data (SPMD), because we are performing iden-
tical program on partitions of data.

BSP

When analyzing performance of an iterative algo-
rithm on Spark, it appears that it is sufficient to use

1This is in contrast to Spark predecessors, for instance
MapReduce/Hadoop, where data must be read from disk on
each iteration.

1

BSP[13] model. Individual pair-wise remote memory
accesses are below the abstraction layer and models
such as CTA and LogP do not provide additional ben-
efit when operating with Spark abstractions[12, 14].

At the beginning of each iteration we broadcast tasks
and wait for all the partitions to compute their par-
tial results before combining them. This is sim-
ilar to super-steps with barrier synchronization in
BSP. Communication between processors is typically
driver-to-all, and all-to-driver patterns1.

The most important factors of algorithm analysis on
Spark are data partition schemes and individual par-
tition sizes, partial model sizes and communication
latency.

2 Infrastructure

Core Linear Algebra

Spark MLlib uses Breeze[2] and jblas[3] for basic lin-
ear algebra. Both of these libraries are enriched wrap-
pers around netlib[4], which make it possible to use
netlib packages through Scala or Java. Breeze is a
numerical processing library that loads native netlib
libraries if it they are available and gracefully falls
back to use their JVM versions. JVM versions are
provided by F2J library. Library jblas also uses netlib
BLAS and LAPACK under the hood.

Using netlib for numeric computations not only helps
us improve speed of execution, better use of processor
caches, it also helps us deal with issues of precision
and stability of calculations2.

Local Data Types

Core MLlib data types are tightly integrated with
Breeze data types. The most important local data
type is a Vector - which is stored internally as an
array of doubles. Two implementations are available:
DenseVector and SparseVector3.

An extension of Vector is a concept of a LabeledPoint
- which is an array of features: Vector, along with

1Communication will be explained in section Infrastructure,
where aggregation and shuffle procedures are explained.

2Talk by Sam Halliday on high-performance linear
algebra in Scala, where he describes how one can ac-
cess functionality of netlib native routines on JVM:
https://skillsmatter.com/skillscasts/5849-high-performance-
linear-algebra-in-scala

3Internally, both of these provide quick conversions to and
from Breeze equivalents

a label (class) assignment, represented by a double.
This is a useful construct for problems of supervised
learning.

A local matrix is also available in MLlib: Matrix -
and as the case with Vector, it is stored as an array
of doubles, has two implementations: DenseMatrix
and SparseMatrix4.

RDD: Distributed Data

MLlib builds upon Spark RDD construct. To use ML-
lib functions, one would transform original data into
an RDD of vectors. Newer Spark MLlib function-
ality allows operations on a higher-level abstraction,
borrowed from other popular data processing frame-
works: DataFrame. In a later section (3.1, Library
Functions: Distributed Matrices) we will discuss dis-
tributed matrices in detail.

RDD[T] can be seen as a distributed list contain-
ing elements of type T. One can transform RDDs by
transforming contained values in some way, and force
materialization of some results of such transforma-
tions through actions. Let us briefly go through a
few basic transformations and actions.

Let us recap a couple of basic RDD operations. Con-
sider an RDD of integer numbers, A, stored in 3 par-
titions:

A← [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9]]

Here our first partition contains [0, 1, 2, 3], second
contains [4, 5, 6], and the last partition has [7, 8, 9].
Now, we can create another RDD, B, as follows:

B ← A.map{n⇒ n+ 1}

B is now [[1, 2, 3, 4], [5, 6, 7], [8, 9, 10]]. We could per-
form a reduction operation, say calculate the sum of
all elements in B with an action operation reduce:

sum← B.reduce{(a, b)⇒ a+ b}

Calling reduce starts a computation that will touch
each element in each partition and combine results
into a single value that will be available on the driver
node.

Aggregations

Action reduce might be the simplest non-trivial ag-
gregation operation. It requires that the type of the

4Again, internally, Breeze matrix conversions are also pro-
vided

2

output of the reduction function is same as the type
of the values stored in RDD. In each partition, this
reduction function will be applied to values in that
partition and the running partial result. Then each
of the partial results is sent to the driver node and
the same reduction application is performed on those
partial results locally.

If we wanted to have an output of a different type, we
could use an action aggregate, to which we could sup-
ply both the append-like and merge-like functions:
one for adding individual values to the partial result,
and the other for merging partial results. With aggre-
gate, as with reduce, we will go through each value in
a partition and perform an append-like operation to
come up with a partial result. Then each of the par-
tial results is sent to the driver and now the merge-like
operation is performed on those partial results locally
on the single driver node.

Actions reduce and aggregate are not the only ways
to aggregate values stored in an RDD1. In fact, in
MLlib, it is a common pattern to aggregate in trees:
treeReduce and treeAggregate, which attempt to com-
bine data in a tree-like reduction: initial partitions
are leaf nodes and final result is the root node. Users
can specify how deep the tree should be and Spark
will minimize the communication cost, repartitioning
and reducing the data at each tree aggregation step2.

Tree aggregation is useful when merging of model
partials requires considerable amount of computation
and if there are a large number of partitions, where
it might be cheaper to spread out this merge com-
putations onto the worker nodes. In any case, merge
operation must be commutative and associative3.

In any aggregation, the step of transferring data will
have to go through writing to disk and a remote read
from another node. More generally, this operation is
called shuffle.

Shuffle

Shuffle is an inter-node communication between
stages of a Spark job, potentially an all-to-all com-
munication. Initially, on each node, we start trans-
forming our RDD data locally, and proceed doing so
as long as we do not need data from other partitions.

As soon as we need data from other nodes, we block
and retrieve data from those remote nodes that hold

1See Spark documentation for more action operations.
2By default, Spark uses 2-level trees to aggregate data.
3making the set of aggregations a commutative semi-group.

data for a new data partition that is assigned to this
node (Fig 2).

How expensive is Spark shuffle? On each node,
it needs to write a portion of data designated for
some other partition in some separate file, later to
be pulled by the node to which this piece of data
belongs. Let us imagine the worst case scenario,
where re-partitioning is spreading each previous par-
tition into all other partitions. Then on each node,
we will have to write all data to disk, and each
node will have to pull data from each other node -
all of the data will be moved and all of the data
cached in memory on each node become useless, be-
cause now each node has to work with new data.

p1 p2 p3

p1 p2 p3

Figure 2: Shuffle

Shuffle operation is per-
formed during many stan-
dard RDD operations. For
example, if we attempt to
join two RDDs of key/-
value pairs on their keys,
we are re-partitioning our
data into a common key
partitioning and thus per-
form a shuffle.

To build efficient programs on Spark, it is important
to partition data with consideration of required data
transfers. For example, this is done in treeAggregate
described earlier: at each level of the tree, on av-
erage only half of the current data gets transferred
while the other half stays on the same node for fur-
ther processing. MLlib implementation is aware of
this concern.

3 Library Functions
Let us look at available MLlib functionality in de-
tail. This section roughly follows MLlib’s core lower
level mllib package organization. We will go through
most of the library functionality, discuss implemen-
tation details and comment on notable features,
strengths and limitations of implementation, mainly
focusing on parallelization and scalability.

3.1 Distributed Matrices

Package linalg.distributed contains some imple-
mentations of distributed matrices4. The package
provides a root interface for distributed matrices:

4org.apache.spark.mllib.linalg.distributed

3

DistributedMatrix. For the remainder of this sec-
tion, let us consider a m × n matrix M with ele-
ments vij , column vectors c1, c2, ..., cn and row vec-
tors r1, r2, ..., rm.

We use RowMatrix to partition matrix data into row
vector ranges: an RDD of row vectors ri. To block-
partition the matrix we use BlockMatrix. Sometimes
it is convenient to use CoordinateMatrix to construct
distributed matrices from distributed matrix entries
(i, j, vij). CoordinateMatrix provides methods to con-
vert itself into RowMatrix or BlockMatrix forms.

RowMatrix is the workhorse of Spark distributed ma-
trix computations. Typically, distributed operations
are implemented for RowMatrix and operations on
other implementations would first convert to Row-
Matrix and then reference these implementations.

All of the following implementations are for RowMa-
trix, with the exception of eigenvector finding and
distributed matrix multiplication. Eigenvectors can
be computed for a matrix without having it material-
ized, i.e. we only need to provide a function that will
calculate products of this matrix by some input vec-
tor, and so we do not need to actually have any RDD
representing this matrix. Distributed matrix multi-
plication is implemented only for BlockMatrix form.
Let us look at matrix operations in more details.

Gram Matrix

Calculation of Gram matrix

G = M†M, s.t. Gij = 〈ci, cj〉

is also parallelizable. This is done by aggregation
of

∑m
i=1 r

†
i ri over all rows ri. As with most other

computations on arrays, under the hood, each ma-
trix/vector operation is performed by BLAS routines.
One Spark job will compute Gram matrix and make
it available on the driver node. Each worker node will
have to use O(n2) space to store intermediate com-
puted data and communicate it during aggregation
step. Aggregation results in a single local matrix on
the driver node.

Again, just as with eigenvector search, this means
that materialization of Gram matrix through this
computation is not scalable in the number of columns,
but it is scalable in the number of rows. For both
of these distributed operations, parallelization across
rows before aggregation seems to be optimal: each
worker node is busy computing partial results for
some partitions.

Eigenvectors

In Spark MLlib, finding eigenvectors is possible only
for symmetric matrices with real values. Calcula-
tion is done with Arnoldi iterations, provided by
ARPACK1. The materialized matrix itself is usually
not necessary, only the callback function that com-
putes its multiplication by a vector. This allows for
distributed processing where multiplication operation
is performed in parallel by worker nodes and the re-
sults from each partition can be associatively aggre-
gated on the driver node. However, since the iter-
ations are performed locally on the driver node (all
intermediate data is stored locally), this method still
requires space of 4n(k + 1) double values on a sin-
gle node, where n is the number of columns and k is
the number of leading eigenvalues that was requested
to be computed. This computation is scalable in the
number of rows, but not in the number of columns.

Singular Value Decomposition

Let’s assume we want to find SVD decomposition

M = UΣV †

where Um×k and Vn×k are orthogonal matrices and
Σk×k is a diagonal matrix. To do this, we find eigen-
vectors of

M†M = V Σ2V †

yielding V and Σ, of dimensions n × k and k × k
respectively, which allow them to completely fit in
memory for smaller n and k values. Then we can also
compute U of dimension m × k, which typically will
not fit in memory on a single machine and needs to
be distributed, since m is the dimension representing
the number of rows in the RowMatrix representation.

Depending on how large n and k (number of values
to keep) are, singular value decomposition will be cal-
culated differently. If n is small (less than 100), or if
k is larger than n/2 and n is not bigger than 15,000
threshold, let us call this condition for local eigen-
value computation, then we compute Gram ma-
trix G = M†M in distributed fashion once, as shown
above, and obtain a local matrix G. Then if k is less
than n/3, we compute its eigenvectors locally, as ex-
plained above, using ARPACK. If k is greater than
or equal to n/3, we use BREEZE method to com-
pute SVD directly using Gram matrix multiplication
callback function2.

1More information on Arnoldi iterations and ARPACK soft-
ware can be found in [8, 7, 6].

2BREEZE uses LAPACK for this operation

4

If on the other hand, if condition for local eigen-
value computation doesn’t hold, then we avoid ma-
terializing Gram matrix, and instead, iteratively com-
pute eigenvalues of M†M , in each iteration1 we com-
pute

v 7→M†Mv

in parallel, transmitting data with size only on the
order of O(n). As with eigenvalue search and Gram
matrix computation, this will require a new map/ag-
gregate job and the associated communication costs
in each iteration.

SVD computation in Spark MLlib scales (distributes
computation) well with number of rows (m), but not
as well with the number of columns (n): one must
be aware that a vector of size n must fit in mem-
ory. For example, when SVD is applied to a term-
document matrix, number of columns (typically num-
ber of terms) should be trimmed down to something
manageable on a single machine - e.g. 10K2.

Covariance Matrix

Treating each row vector ri as an observation with m
values, we can use Gram matrix to calculate covari-
ances. Gram matrix is calculated in parallel and is
made available on the driver node. In a distributed
way, we also compute means for each column:

µi =
∑

k

ck
i /m

and use the formula

Cov(X,Y) = E[XY]− E[X]E[Y]

to compute covariances without care for precision (no
BLAS here). This makes Spark covariance computa-
tion for RowMatrix numerically unstable and MLlib
users should be aware of this.

Principal Component Analysis

Spark MLlib calculates PCA by computing SVD for
covariance matrix locally on the driver node3 and tak-
ing the desired number of singular values. Here we in-
herit numerical instability of covariance matrix com-
putation operation, which is described above. Also,

1Arnoldi iteration method. Local computations are han-
dled by ARPACK, we only provide a callback function that
will compute v 7→ M†Mv in parallel and return computed
multiplication back to eigenvector computation routine.

2example of this is shown in book Advanced Analytics with
Spark[21]

3Breeze over LAPACK

here we cannot arbitrarily scale with the number of
dimensions because we have to perform this on a sin-
gle node. Principal component analysis and singular
value decomposition are the main methods for dimen-
sionality reduction in Spark MLlib.

Pair-wise Cosign Similarities

This operation calculates cosine similarities between
all pairs of columns. It performs an algorithm DIM-
SUM (dimension-independent similarity computation
using MapReduce). The algorithm effectively per-
forms computations on sampled data4.

Local Matrix Multiplication

Spark MLlib support transformation of a given dis-
tributed matrix M , by multiplication with a local
(not-distributed) matrix A on the right side: MA.
Matrix A is serialized and broadcast to all worker
nodes and each portion of the resulting matrix MA
is calculated by worker nodes independently, result-
ing in a new RowMatrix.

Distributed Matrix Multiplication

Distributed matrix multiplication is not available for
RowMatrix, but it is implemented for BlockMatrix
form. Ideally, we want this to be scalable not only
in the number of rows, but also in the number of
columns. This requires us to partition in both di-
mensions, which is achieved with BlockMatrix5.

This multiplication between two block matrices M
and N requires that they have compatible parti-
tioning schemes: number of columns in blocks of
M must match the number of rows in blocks of
N . Co-grouping blocks of A and B by (iA, jB , k),
where iA are row indices of blocks in A, jB are
column indices of blocks in B, k runs through
column indices of A (same as row indices of B),
and reducing over all k to common key (iA, jB), we
come up with blocks of AB. Co-grouping requires
a shuffle step6, where each target block (iA, jB)
of AB receives a row of blocks from A and a
column of blocks from B: so in total from about
O(numColBlocksA + numRowBlocksB) partitions,
which makes the total communication size during

4Description of DIMSUM algorithm can be found here:
http://arxiv.org/abs/1206.2082

5Current published version of Spark MLlib (1.3) provides
only block partitioned version, in future it might provide ma-
trices with other partitioning, such as cyclic or hybrid.

6worst case is all-to-all communication

5

shuffle O(numColBlocksA × numRowBlocksB ×
(numColBlocksA + numRowBlocksB) ×
colsPerBlockA × rowsPerBlockB . This further
simplifies to

O(2n3
A/colsPerBlockA)

double values transmitted between nodes1.

This shows the trade-off between communication size
and computation size on nodes: we can decrease com-
munication size by increasing the number of columns
per block in A (colsPerBlockA), and in doing so in-
crease the computation and memory requirements on
each node: extreme case is a non-partitioned matrix,
where all computation is performed on a single node.
On the other hand, we can allocate smaller computa-
tion work on individual nodes by decreasing the block
size (in this case columns per block in A), allowing
for bigger communication size during shuffle phase.

3.2 Convex Optimization

Many ML problems can be viewed as convex opti-
mization problems. MLlib provides parallel imple-
mentations for two basic optimization algorithms:
SGD and L-BFGS[10, 11].

Package optimization2 contains a trait Optimizer,
which requires only one method

optimize(RDD[(Double, V ector)], V ector) : V ector

This method takes labeled input data points
(RDD[(Double, V ector)]) and an initial weights vec-
tor, and performs an optimization yielding the result-
ing weights vector.

Out of the box MLlib provides two optimizers:
Stochastic Gradient Descent and L-BFGS.

Stochastic Gradient Descent

For SGD, we provide a method that calculates gra-
dients (trait Gradient) and a function that updates
the weights (trait Updater), possibly adding gradient
contributions from some regularization3. Let us look
at Gradient and Updater in more detail:

1it is likely that there will be multiple partitions will be
allocated per node, so this is worst case scenario, where each
partition is computed on a distinct worker node. Also it in-
cludes the blocks that this partition already has - its own block,
but this is not important asymptotically.

2org.apache.spark.mllib.optimization
3In future, Updater will be split into Regularizer and

StepUpdater

Gradient: given a labeled data point and weight
vector, calculate gradient and weight vector update.
MLlib provides 3 implementations: Hinge, Least
Squares, Logistic.

Updater : given a calculated loss gradient, calculates
the next iteration of model vector, by adding regu-
larization gradient and adjusting for step size. Out
of the box, MLlib comes with implementations with
no-regularization or regularizations based on L1, L2.

SGD computation follows the iterative execution
model described earlier4. We start with a guess for a
weight vector. Then, in each iteration, we broadcast
that current weights vector along with the gradient
computation. Using this information, we compute
gradient contributions from data points in each par-
tition. We perform this calculation on a subset of
available data in partition, facilitated by RDD sam-
pling functionality5. At the end of the iteration, par-
tial gradients are aggregated on the driver node and
an Updater is applied, where additional regularizer
gradients are added, thus yielding a new estimate for
the weights vector.

Iteration termination condition is simply the number
of iterations, with default value of 100.

L-BFGS

L-BFGS is a quasi-Newton method that in each
iteration uses second-order adjustment to find di-
rection towards improved guess and hence con-
verges faster than SGD, which only uses first-
order approximation[10]. Inverse Hessian (matrix of
second-order partial derivatives) is not materialized,
but instead is approximated using previous gradient
evaluations.

Breeze drives iterations of the calculation, and
through callback functions interacts with Spark when
we need to calculate loss value and gradient for a
given weight vector in parallel.

It is preferred to use L-BFGS because of its faster
convergence, however some current (1.3) Updater im-
plementations that were originally designed for SGD
are not suitable for L-BFGS (e.g. L1) [1].

4see section Execution Model
5RDD.sample(...) method

6

3.3 Generalized Linear Model

Generalized linear algorithms can be solved as convex
optimization problems. We can pick an optimizer,
provide it gradient computation method and regular-
ization function, and solving that optimization prob-
lem, we get solutions to regression problems.

Algorithm Loss Regularizer
Linear Regression Least Squares None
Logistic Regression Logistic L2
Ridge Regression Least Squares L2
Lasso Regression Least Squares L1

Linear SVM Hinge L2

Figure 3: Generalized Linear Algorithms

Combinations of the provided gradients and regular-
izations automatically give us some useful algorithms
from the Generalized Linear Algorithms family in the
form of stochastic gradient descent (Fig 3).

Spark MLlib 1.3 provides SGD implementations of
these algorithms. For logistic regression, it also pro-
vides L-BFGS implementation.

3.4 Classification Algorithms

Let us look at available classification algorithms.
Most of them rely on generalized linear algorithms, as
explained earlier. Some rely on tree-based methods
and we will discuss them separately in section Tree
methods.

In package classification1 we have a trait Clas-
sificationModel which predicts a class for a given
vector. There are three implementations that are
trained with Logistic Regression, Linear SVM or
Naive Bayes. As we have seen earlier, Logistic Re-
gression and Linear SVM are members of generalized
linear algorithms family. MLlib provides their imple-
mentations with SGD. In addition to that, we also
have L-BFGS implementation for logistic regression.

These generalized linear model classifications support
only 2-class classification, which is a major drawback
for users. It is possible to reduce the problem of mul-
ticlass classification to combinations of binary classi-
fiers with schemes such as one-vs-all, or one-vs-one, or
others. Work is currently under way in ML pipeline
API2 to introduce generic multiclass to binary reduc-

1org.apache.spark.mllib.classification
2ML pipeline API will be discussed in section ML Pipeline

API

tion schemes. Tree-based methods and Naive Bayes
support multiclass classification.

Provided Naive Bayes algorithm implementation is
for a Multinomial Naive Bayes[9] model with proba-
bility of a vector x = (tj) to belong to class Ci equal
to:

p(Ci|x) = p(Ci)
∏

j

p(tj |Ci)

We compute p(Ci) and p(tj |Ci) in parallel, by scan-
ning through all data points and collecting totals,
and thus deducing the frequencies, which are used
as probability estimates. Transferred data is on the
order of O(m×P), where m is the number of features
and P is the number of partitions. This algorithm im-
plementation treats feature values as counts and re-
quires that all values of all features are non-negative.

MLlib classification algorithms support only linear
kernels, which is a considerable limitation for many
applications. Primary reason for this is that non-
linear kernels are difficult to parallelize. This can
be (only) partially mitigated by introducing feature
interactions. Also, as mentioned earlier, a rich set
of multi-class decision-tree based classification algo-
rithms is also provided in Spark MLlib.

3.5 Regression Algorithms

Most regression algorithms3, with the exception of
two, come from the above-mentioned generalized lin-
ear models and all are implemented with SGD: Lin-
ear Regression, Lasso/Ridge Regressions. Within
the same package, an additional regression algorithm
is provided: Isotonic Regression. Outside of this
package, we have decision tree-based regression al-
gorithms.

MLlib isotonic regression is implemented using paral-
lelized pool adjacent violators (PAV) algorithm and
is available only for one-dimensional feature vectors.
Sequential PAV implementation and parallelization
are described in [15, 16].

3.6 Tree Methods

Spark MLlib provides several tree-based classification
and regression algorithms in package tree4, which
is probably one of the more complicated algorithm
packages in core MLlib today and also could be one
the most useful for classification and regression prob-
lems. Two main algorithms are ensemble algorithms

3Package org.apache.spark.mllib.regression
4org.apache.spark.mllib.tree

7

that are composed of one or more simple decision
trees: Random Forest and Gradient Boosted Trees.

Tree algorithms are driven through configuration ob-
jects of class Strategy or BoostedStrategy, where users
can specify numerous algorithm parameters allowing
for a great deal of flexibility.

For example, there are abstractions Impurity and
Loss associated with tree algorithms. Trait Impu-
rity captures the score of class purity used in calcu-
lation of information gain, for example, during tree
growth stage when we perform decision node splits.
Three implementations are provided which are based
on variance, Gini, and entropy. Trait Loss is used
to communication loss function in Gradient Boosted
Trees, and has three implementations: LogLoss, Ab-
soluteError and SquaredError. Then, there are ab-
stractions for the type of a feature (categorical or
continuous), quantile strategy, ensemble combining
strategy, algorithm type (classification or regression),
and so on - a modular design allowing many compo-
nent combinations.

Base Decision Tree Algorithm

A base single decision tree algorithm functionality is
implemented in an object DecisionTree. It provides
a common shared implementation of fitting one de-
cision tree that is used by both Random Forest and
Gradient Boosted Trees algorithms.

Two important methods here are: findSplitsBins,
which picks splits for all features taking into account
the type of features (e.g. categorical or continu-
ous) and the task at hand (regression, binary classi-
fication, multiclass classification) and findBestSplits,
which finds the best splits for given nodes. Operation
findSplitsBins works with a sample of input data for
continuous value features and safely handles categor-
ical data. This operation is scalable. With findBest-
Splits we pick best splits at each tree node in parallel.

Random Forests

Random Forest is an ensemble algorithm that is com-
posed of one or more simple Decision Trees[17], where
prediction is based on majority vote or an average
value of predictions of all decision trees in the en-
semble. It can be used for both classification and
regression.

We start by picking sub-samples and feature sets
for each tree in the ensemble. Then we distribute

the recursive computation of best splits in all trees.
To reduce computation needed, we perform splits on
binned data where possible. At the end of this dis-
tributed tree construction, we have an ensemble of
trees that is ready to do predictions.

When we increase the number of trees in random for-
est (e.g. to reduce variance of our model), or just add
more training data, we are able to evenly distribute
the computation load across all cluster nodes, which
makes it a good choice for large problems.

Gradient Boosted Trees

Gradient Boosted Trees give us a different way of
combining individual decision trees. We build up
a sequence of smaller trees with boosting method:
each new tree contributes a little bit of new in-
formation to the final decision, that previous trees
misclassified[18]. This is done by increasing the
weight of those misclassified data points at each iter-
ation (boosting of some weights).

With gradient boosted trees, each tree is smaller than
in random forest, but we need to build up trees
sequentially. Calculation of loss function and re-
weighting is done in parallel, which helps with paral-
lelization of each individual iteration.

3.7 Clustering Algorithms

MLlib provides four clustering algorithms: K-means,
Latent Dirichlet Allocation, Gaussian Mixture, and
Power Iteration Clustering. K-means and Gaussian
mixture algorithms find more general usages, while
power iteration clustering and latent Dirichlet allo-
cation are associated with graph and document data
respectively.

K-means

In K-means algorithms, we pick some initial set of
cluster centers and in each iteration we compute a
better set of centers. This is done through relabeling
the data points by picking the closest of the current
centers and picking class means of data points, based
on the new class assignments, as our new centers.
Error function that we care about in K-means algo-
rithms isWithin Set Sum of Squared Error (WSSSE).

Algorithm runs in the typical [broadcast, compute
partials, collect, ...] pattern that was described in
section Iterations, making this computation trivially

8

parallelizable and scalable1.

Users can control parameters such as number of it-
erations, convergence threshold, number of times to
re-run algorithm. The last parameter is important
because there is no guarantee of a single minimum.

Gaussian Mixture

Generalization of K-means algorithm, Gaussian Mix-
ture Model, is implemented in Spark MLlib. Gaus-
sian Mixture Model objects of class GaussianMixture-
Model (GMM) are encoded by one array of weights
and one array of multivariate Gaussian objects, which
themselves are pairs of two other items: one double
representing mean, and one local matrix representing
covariances.

Gaussian Mixture algorithms tries to find the set
of Gaussian distributions of sub-populations within
the main population sample that we are working
on. It does so with Expectation Maximization (EM)
algorithm[19], where at each step we try to come up
with a better estimated set of Gaussians.

Input data is in the form of RDD of local vectors.
First step is to convert local vectors into Breeze vec-
tors and cache them in memory. This is the data
that our iterations will run against. We pick a small
random sample of data for each cluster and calculate
means and the covariance matrix for chosen clusters
- this will serve as our initial guess.

In Expectation Maximization technique, each iter-
ation consists of two steps: step (E) calculate log-
likelihood with current model parameters, step (M)
find the parameters maximizing likelihood.

...
E:1
E:2
E:3

M
E:1
E:2
E:3

M
...
...
...

Figure 4: Expectation Maximization iterations

The first step is performed in parallel, as the current
model is broadcast to all nodes, where cluster con-
tributions for each input point will be computed into
partial results. Partial results are expectation sums,
data structures with size on the order of kM2, where
k is the number of clusters and M is the number
of features. These partial expectation sums are be
aggregated on the driver node. Second step is per-

1MLlib also has a non-parallel K-means version. By default,
a parallel version described here is used.

formed completely on the driver node, where these
expectation sums are used to create a new estimate
for distributions2.

Since step (E) is completely distributed and it is the
only step where we need to look at all of the data
points, this algorithm computation is scalable with
the number of data points.

However, because we have to operate on expectations
sums on each node and their sizes are on the order of
O(kM2) (contains all covariance information for all
clusters), this implementation is not scalable with the
number of clusters and number of features, though
this limitation most likely won’t come up often as an
issue in practice.

Power Iteration Clustering

Power Iteration Clustering[22] will cluster indexed
data points vi with respect to provided symmetric
similarity function s(i, j). One way to view input to
this clustering is as (undirected) graph vertices with
similarity provided as edge weights. Then similarity
function, the main user input to this algorithm, can
be seen as an adjacency matrix A with

Aij = s(vi, vj)

which is transformed into a random walk normalized
Laplacian W :

W = D−1A

where degree matrix D is a diagonal matrix with

Dii = ΣjAij

Approximation of eigenvector corresponding to the
largest eigenvalue will be used as the intermediate
vertex weights vector vᵀ. We find the largest eigen-
values of this matrix W through an iterative process
(power iteration), where each new estimate for an
eigenvector is a multiplication of previous estimate v
by matrix W (c is a normalizing factor for stability):

vᵀ → cWvᵀ

As one can notice, parallelization is trivially achiev-
able here. Partial products can be calculated in
distributed fashion and aggregated to produce new
weights vᵀ.

It is worth noting, that in Spark MLlib, this is actu-
ally done with GraphX vertex messaging functional-
ity. This process in the end amounts to the same pro-
cessing as is done in distributed matrix-vector multi-
plication.

2uses BLAS syr function.

9

Convergence condition used is on the rate of change
in differences between successive weight vector esti-
mates vᵀ - algorithm can be stopped when accelera-
tion of changes is small enough[22].

Multiple iterations of this algorithm lead to weight
assignments vᵀ that are then passed into K-means
algorithm for separation into clusters, also a paral-
lelized procedure.

Latent Dirichlet Allocation

Just as we used iterative Expectation Maximization
technique to find the best fitting mixture of Gaus-
sians, we can find best fits for topics in documents,
when looking at both documents and topics as bag-
of-words objects.

In Spark MLlib, search for the best fitting topic
model with Latent Dirichlet Allocation is reduced
to an optimization problem. Two implementa-
tions are provided - one is based on Expectation
Maximization[24], which uses GraphX, and the other
is an online algorithm that operates on samples of
data and performs online variational Bayes LDA[23].

The first optimization algorithm creates a bipartite
graph representing term-document relationships. On
each vertex we store an array that contains informa-
tion about topic counts (array of doubles). It starts
with random soft assignments of tokens to topics and
repartitioning of the graph, so that edges are grouped
by document. Then we perform typical expectation
maximization iterations, where at the end of each it-
eration we have updated topic counts on each vertex.

The online optimization algorithm processes a small
sample of the corpus on each iteration, and updates
the term-topic distribution adaptively for the terms
appearing in that sample. As input data, it takes
an RDD of document IDs along with a vector of
terms for that document (bag of words representa-
tion) and doesn’t modify it for processing, unlike the
first graph-based EM implementation.

Both of the algorithms parallelize well with the num-
ber of documents. As for the number of terms, it
appears that the second implementation has to keep
data structures with size on the order of the number
of terms in memory and thus can present a scalability
bottleneck.

3.8 Recommendation Algorithms

Currently, Spark MLlib provides only one recommen-
dation algorithm - Alternating Least Squares (ALS)
- it is based on the collaborative filtering technique,
where two sides (factors) of recommendation (e.g.
users and products) are hypothetically connected
through a set of unobserved (latent) factors[20].

IfA = Aij is such a matrix with each row representing
some user’s purchases and each column representing
some product purchases, then we propose that it is
a product of two matrices X and Y †, where both X
and Y have k columns:

A = XY †

This means that somehow we can capture informa-
tion about users and products individually in a vec-
tor in some k-dimensional space. It could be, for in-
stance, a preference for some genre of music, or some
other topic which is not openly given in input data.
Then generated recommendations work as similarity
measure between users and products in this discov-
ered basis, e.g. inner product (cosine similarity):

Rec(usera, prodb) = ΣiXaiYbi

Typically, input data to this algorithm is a large and
sparse matrix. For example, if we look at users and
their purchased or rated products, users could be rep-
resented by rows and products by columns: each rat-
ing (explicit information - user rated the product) or
each purchase (implicit information - we assume that
user liked the product to some degree) is represented
by an entry in this sparse matrix.

When we supply an input RDD of all entries in this
matrix A (e.g. ratings), we iterate a fixed number of
times, by alternating computation of X from A and
Y , and Y from A and X, using the familiar minimum
least squares computation:

X = AY (Y †Y)−1

and
Y † = (X†X)−1X†A

making this training procedure scalable and well-
parallelized.

For the final computed model, Spark MLlib imple-
mentation creates an object of type MatrixFactoriza-
tionModel, which is a model that represents the result
of matrix factorization XY †.

10

Provided algorithm can be trained with implicit rat-
ings, e.g. user X purchased product A, or explicit
ratings, e.g. user X rated product A at 4.5/5.0. Both
versions run similar iterations under the hood.

One scalability limitations are that the current im-
plementation supports only IDs (number of rows/-
columns) of type 32-bit integers. Another drawback
is that the model is large, it is a distributed matrix
of size on the order of the number of users and prod-
ucts. This might be a concern for real-time analytics
applications, because in order to produce recommen-
dations, one will need to have this model in memory
on all nodes and run a Spark job to come up with rec-
ommendations of products for a given user, or users
for a given product.

3.9 Frequent Pattern Mining

Spark MLlib provides a parallel implementation
an algorithm for mining frequent item-sets: FP-
growth[25, 26]. Input data comes in as an RDD of
arrays of items (arbitrary type of items). Initially,
we calculate individual item frequencies by simply
using a reduceByKey operation. Then we utilize a
specialized suffix-tree data structure, FP-Tree, to run
through the elements of the RDD and build all asso-
ciation frequencies. This ends up being performed
completely in parallel. The only possible bottleneck
is the size of the tree, which must completely fit in
memory on any individual node.

3.10 Feature Engineering

Besides standard ML algorithms, we are also pro-
vided several feature engineering tools: Word2Vec,
TF/IDF, feature normalizer/scaler, feature selection.
Standard scaler will scale and shift data to make its
mean zero and standard deviation of unity. Normal-
izer will scale the values of a vector to make its norm
unity. Chi-squared feature selector will perform Pear-
son’s test for independence between categorical fea-
tures and label, and select only the features closest to
the label. All these three functionalities are trivially
parallelized. Let us look at Word2Vec and TF/IDF.

Word2Vec

Given a set of documents, this procedure will create a
vector representation of each occurring term, in such
a way that "similar" terms will be closer in this vector
space. The concept of similarity between terms here
is when another term could replace this term given
the context, something similar to the concept of a

synonym.

Spark MLlib implementation uses skip-gram model
with hierarchical softmax method. Algorithm will
perform a series of iterations, where in each itera-
tion we will go through all sentences and update two
arrays of size equal to the vocabulary size (number of
all terms).

During processing of each sentence, we go through
each word and for each word we will need to loop
over log(|V ocabulary|) elements in the Huffman en-
coding (tree) of all terms. This is the hierarchical
softmax portion used to calculate conditional term
probabilities.

Assuming each node can hold two arrays and a tree
containing data for each term in vocabulary, then the
rest is easy parallelized along with input sentences
distribution.

TF/IDF

Term frequency-inverse document frequency is calcu-
lated in two parts. First we need to compute term
frequencies and then we also need to compute inverse
document frequencies. In Spark MLlib, hashing is
used to generate a unique id for a term. This helps
with parallelization, as no single map of term indices
is necessary, but this comes at a cost of hash colli-
sions. Term frequencies are calculated trivially with
a single pass over sentences, while inverse document
frequencies are calculated in two passes: one to count
occurrences, and second to normalize them.

3.11 Other Functionality

Let us just mention several useful functionalities pro-
vided in Spark MLlib that are naturally parallelized
or do not require parallelization.

Basic Statistics

Summary statistics can obviously be calculated in
parallel. Kernel density estimation is possible on
given limited set of points for which it needs to be
computed. Here we simply aggregate contributions
from all elements in the dataset at these points.

It is possible to generate RDDs with random num-
bers from certain distribution families, but it is not
clear how to properly align it with existing RDD data.
Random RDD creation basically works by shipping a
specific random number generator to partitions and

11

modifying its seed using partition id.

Pearson and Spearman correlations are provided:
Pearson correlation is computed from covariance ma-
trix generated from rows of a RowMatrix of incoming
data, while in Spearman correlation computation, we
first construct grouped ranks by iterating over all val-
ues, and then calculate Pearson correlation.

Stratified sampling is possible by providing desired
class distributions and going through each record de-
ciding whether to include it in the sample or not. Ex-
act version of this sampling requires more processing,
but is still parallelized.

Chi-squared independence test is parallelized - only a
single pass through distributed input data is neces-
sary. Intermediate data will be aggregated to con-
struct contingency tables used in further processing.

Evaluation Metrics

Several evaluation metrics are available for models:
BinaryClassificationMetrics, MulticlassMetrics, Re-
gressionMetrics, RankingMetrics. All of metrics func-
tions are naturally parallel in nature, since they use
some computed model to calculate predictions for
each point in the data set in parallel.

PMML Export

Spark MLlib provides a trait PMMLExportable to des-
ignate models that can be exported to PMML 1. Im-
plementation of PMML export is a very recent devel-
opment and is provided only for a basic set of MLlib
models. It is currently under development to include
more models. This is performed locally on the driver
node.

4 Streaming Support
One of the desired qualities in a machine learning
library is ability to learn from streaming data.

One special case is models that are built using SGD.
Whenever model weights are updated with stochas-
tic gradient descent, we can use streaming data to
train this model continuously. Spark MLlib provides

1Quoting from Wikipedia, Predictive Model Markup Lan-
guage (PMML) is an XML-based file format developed by the
Data Mining Group to provide a way for applications to de-
scribe and exchange models produced by data mining and ma-
chine learning algorithms.

implementation of this sort for binary classification:
StreamingLogisticRegressionWithSGD.

For streaming clustering, we have an algorithm
StreamingKMeans available in the library.

This is where the list of streaming ML algorithms
provided by default ends.

5 spark.ml
Support for high-level use of MLlib is provided with
spark.ml, which organizes machine learning work
with ML pipelines. By its meta-processing nature,
this processing itself does not need to be parallelized,
while individual stages of the pipeline will have their
own independent parallelization.

Dataset

Spark ML operates on a ML Dataset, a concept
of data set which is built on top of Spark SQL
DataFrame structures that can use custom binary
formats to store columnar data more efficiently.
DataFrame performance received a lot of attention
from Spark developers, making newer implementa-
tions CPU-efficient, cache-aware.

Pipelines

Two main concepts in spark.ml are ML pipeline state-
less processing stage types: Transformers and Esti-
mators. Transformer stages transform DataFrames
into new DataFrames. For instance, some trans-
former stage can apply a model to data and calculate
predictions. Estimator stages take DataFrames and
create Transformers. An example of this would be a
learning algorithm that produces a model that can
make predictions on new input data. A sequence of
Transformers and Estimators forms a Pipeline.

6 Comparisons
Let us briefly discuss how Spark MLlib is similar to
or different from some other existing machine learn-
ing libraries2. We can analyze and compare alter-
natives using the following four axis: availability of
algorithms, parallelization and distribution of work-
load, visualization capabilities, and flexibility.

2A comprehensive review and comparison of all machine
learning frameworks and libraries is not provided here. Instead
only 4 major alternatives are discussed

12

More mature ML libraries and frameworks, such as
R, WEKA and scikit-learn, provide a multitude of
algorithms, while Spark MLlib is currently not as
rich. For example, it doesn’t provide an out-of-the
box ready-to-use multiclass SVM constructions.

Spark MLlib is still in early stages and it is not yet a
common tool for data scientists today. This is in com-
parison to established leaders such as R and python-
based libraries.

Compared to other libraries, Spark MLlib offers bet-
ter parallelization - almost all of the algorithms that
are implemented, are implemented so that work gets
distributed across the cluster nodes. Its machine
learning algorithms scale linearly with the amount of
data. In contrast, execution models of R and python-
based libraries rely on having the dataset in memory
on a single machine1.

One exception to this would be Apache Mahout
project, which is a library on machine learning algo-
rithms that works on top of Apache Hadoop (MapRe-
duce). With the adoption of Spark and shown in-
efficiencies of MapReduce framework when dealing
with iterative algorithms, it appears that Mahout al-
gorithms will have to migrate to Spark framework, or
somehow will be superseded by Spark MLlib.

M
Ll
ib

R sci
kit
-le
ar
n

W
EK

A
M
ah
ou
t

? ? ? Number of algorithms
? ? Algorithm parallelization

? ? ? Visualization functionality
? ? ? Data processing flexibility
? ? ? Ease of prototyping
? ? ? ? Execution Speed

? ? ? ? Project Maturity

Figure 5: Machine Learning framework evaluations
by category. Better framework/library is subjectively
chosen by author for each category and marked with
a star.

Strong support for visualization is typically provided
in established analytics frameworks, while in Spark
MLlib Scala version it is only nascent if at all ex-

1There has been work on integrating R and Spark in a
project called SparkR. With this tool, R command lapply
started on the driver node will be distributed to to worker
nodes, each of which running R locally, via Spark’s map trans-
formation. However, most ML algorithms that are imple-
mented in independent R packages are not automatically par-
allelized with SparkR.

ists2. Python-based version (pySpark) does allow for
iPython like notebook. One of the projects that aims
to bring this interface to Scala is Apache Zeppelin.

With WEKA users can interact through GUI and
command-line interface, or through Java API. GUI
does not offer as rich graphics experience as R and
Python, but having Java API allows for some au-
tomated and more flexible handling of data. While
WEKA provides language support, typically writing
Java code is not as straightforward as R, Python or
Scala. This makes WEKA less desirable for quick
prototyping and exploratory analysis.

One advantage of Spark MLlib probably lies in the
fact that Scala is a full-fledged programming lan-
guage, which allows for more flexible processing of
data. This is especially important when user have
to perform non-trivial logic when pre-process data
and engineering features, where language expressive-
ness helps users achieve specific functionality faster.
R provides quite a bit of programming functional-
ity, but it is not as flexible as an actual program-
ming language. Python-based library benefits from a
complete language support and a rich set of libraries
written in Python.

7 Conclusions
Apache Spark MLlib library is a young project with
a lot of active development. It offers parallel im-
plementations of many important algorithms: re-
gression, classification, clustering, recommendations,
topic modeling, frequent pattern mining.

Distributed convex optimization implementations of
stochastic gradient descent and L-BFGS methods are
provided in Spark MLlib and used internally for linear
model fits.

At lower level, it offers stable linear algebra compu-
tations that can be run efficiently on native BLAS,
providing distributed matrix computations: multi-
plication, eigenvalues for symmetric matrices, SVD
decomposition. On higher level, it provides ML
pipelines API which make it possible to compose
lower level functionality.

In addition to machine learning algorithms and
higher level framework API, it also provides a lot
of useful utility functionalities for manipulating data
and designing features.

2A project breeze-viz is currently under development to al-
low easy creation of visualizations similar to R and python.

13

References
[1] Machine Learning Library (MLlib) Guide,

https://spark.apache.org/docs/latest/mllib-
optimization.html

[2] Breeze: numerical processing library for Scala,
https://github.com/scalanlp/breeze

[3] jblas: linear algebra for Java, http://jblas.org/

[4] netlib: collection of mathematical software,
http://www.netlib.org/

[5] Jeffrey Dean and Sanjay Ghemawat, MapRe-
duce: Simplified Data Processing on Large Clus-
ters, Google, Inc 2004

[6] W.E. Arnoldi, The principle of minimized iter-
ations in the solution of the matrix eigenvalue
problem Quart. Appl. Math., 9, pp. 17-29 1951

[7] R.B. Lehoucq, D.C. Sorensen, and C. Yang,
ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods SIAM, Philadelphia, 1989

[8] D.C. Sorensen, Implicit Application of Polyno-
mial Filters in a k-step Arnoldi method. SIAM
J. Matrix Anal. Appl., 13:357-385, 1992

[9] Naive Bayes in Text Classification http://nlp.
stanford.edu/IR-book/html/htmledition/naive-
bayes-text-classification-1.html

[10] J. Nocedal Updating Quasi-Newton Matrices
with Limited Storage Mathematics of Computa-
tion 35, pp. 773-782. 1980

[11] D.C. Liu and J. Nocedal On the Limited mem
Method for Large Scale Optimization Mathemat-
ical Programming B, 45, 3, pp. 503-528. 1989

[12] Snyder, Lawrence, Type architectures, shared
memory, and the corollary of modest potential,
Ann. Rev. Comput. Sci 289-317, 1986

[13] Valiant, L. G., A bridging model for paral-
lel computation, Communications of the ACM
33(8):103-111, 1990

[14] Culler, D. et al, LogP: Towards a Realistic
Model of Parallel Computation, Proceedings of
IV ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, May 1993

[15] Tibshirani, Ryan J., Holger Hoefling, and Robert
Tibshirani, Nearly-isotonic regression, Techno-
metrics 53.1 (2011): 54-61. 2011

[16] Kearsley, Anthony J., Richard A. Tapia, and
Michael W. Trosset, An approach to parallelizing
isotonic regression., Applied Mathematics and
Parallel Computing. Physica-Verlag HD, 1996.
141-147. 1996

[17] Breiman, Leo, Random Forests, Machine Learn-
ing 45 (1): 5-32 2001

[18] Friedman, J. H., Greedy Function Approxima-
tion: A Gradient Boosting Machine., 1999

[19] Dempster, A.P.; Laird, N.M.; Rubin, D.B., Max-
imum Likelihood from Incomplete Data via the
EM Algorithm., Journal of the Royal Statistical
Society, Series B 39 (1): 1-38 1977

[20] Koren, Yehuda and Bell, Robert and Volin-
sky, Chris, Matrix Factorization Techniques for
Recommender Systems, IEEE Computer Society
Press, J. Computer, 42: 30-37 2009

[21] Sandy Ryza, Uri Laserson, Sean Owen, Josh
Wills, Advanced Analytics with Spark, O’Reilly,
2015

[22] Frank Lin, William W. Cohen, Power Iteration
Clustering, Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel,
2010

[23] Hoffman, Blei and Bach, Online Learning for La-
tent Dirichlet Allocation, NIPS, 2010

[24] Asuncion, Welling, Smyth, and Teh. On Smooth-
ing and Inference for Topic Models, UAI, 2009

[25] Han et al., Mining frequent patterns without can-
didate generation, Proceedings of the 2000 ACM
SIGMOD international conference on Manage-
ment of data, 2000

[26] Li, Haoyuan and Wang, Yi and Zhang, Dong
and Zhang, Ming and Chang, Edward Y., Pfp:
Parallel Fp-growth for Query Recommendation,
Proceedings of the 2008 ACM Conference on
Recommender Systems, 2008

14

